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This article examines the solution of the problem of heat and mass transfer in 
the Knudsen flow of a gas in a channel of finite dimensions with boundary con- 
ditions which permit the use of different models of the core of gas scattering 
by the channel surface. 

The recent literature mainly contains only methods of solving isothermal problems of gas 
flow in channels of finite length based on the assumption of diffuse scattering of gas mole- 
cules by the channel walls. The exceptions are the studies [i, 2]. De Marcus [i] found an 
isothermal gas flow rate in a finite channel with mirror-diffuse scattering of molecules on 
the walls. However, within the framework of the method of calculation proposed by the author, 
it is unclear both how the temperature gradient is to be accounted for and how more general 
laws of scattering of gas molecules by the channel surface are to be established. The study 
[2] obtained a numerical solution to an isothermal problem with incomplete accommodation of 
the tangential component of momentum. However, the authors had to assign the distribution 
function of the reflected molecules in the form of an exponential series in velocities. This 
approach to formulation of the boundary conditions is insufficiently rigorous. 

The goal of the present study is to calculate the parameters of the nonisothermal motion 
of a low-density gas in a channel of finite length with a formulation of the boundary condi- 
tions that will permit the use of different models of the core of gas scattering by the sur- 
face. We chose the mirror-diffuse model [3] and the model of Cercignani and Lampis [4] to 
perform specific calculations. 

i. We are examining the free-molecular steady flow of a monatomic gas in a cylindrical 
channel of radius R and length L connecting two volumes. The inside surface of the channel 
is isotropic. The gas in the volumes is in equilibrium states described by Maxwell distribu- 
tions f,o and f2 ~ (see Fig. i). The relative pressure and temperature gradients at the ends 
of the channel are assumed to be small. As the scales of measurement of length, temperature, 
pressure, velocity, the distributions, and the numerical densities we respectively chose the 
quantities 2R, T,, P,, 8 -*/2 = (2kT,/m) I/2, pi$3/2/kT,, nl, where T,, PI, n, are the tempera- 
ture, pressure, and numerical density in the left volume. 

Since the determining process in the free-molecular flow regime is the interaction of the 
gas with the channel walls, then to calculate the macroscopic characteristics of the gas flow 
it is sufficient to find the distribution of the molecules reflected from the surface of the 
channel f+(z, c). The boundary condition linking the distribution of molecules incident on 
the wall and the distribution of molecules reflected by the wall has the form [5] 

Ic~lf+(z, c)= ~ Ic~lf-(z, c')7/(z, c'~c)dc'. (1) 
~<0 

The assumption of the smallness of the relative pressure and temperature gradients makes it 
possible to linearize the problem, for example, about the equilibrium state of the gas in the 
left vessel. Then we can write the following for the functions f2~ and f+(z, c): 
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where ~ = Ap/L, r = AT/~, h+(z, c) is the perturbation function. Meanwhile, it is assumed 
that h + << i. 

2. In the free-molecular regime of gas flow, the molecule distribution does not change 
along the path of molecular motion. Thus, proceeding on the basis of the geometry of the 
problem, we can represent the function f-(z, e) at an arbitrary point on the channel wall in 
the form: 

. . . .  c~ 0~<z~<t,  (3) t-  (z, c~) = f~ 0 ~ + f+ (z- -  h ~ ,  ~)0 c~ 

where  ho = Cn/(Cn * + c~ a ) ,  ~r = (--en, c~,  Cz) .  E q u a t i o n  (3) r e f l e c t s  t h e  f a c t  t h a t  t he  mole-  
c u l e s ,  w i t h  the  v e l o c i t y  e R, a r r i v e  a t  p o i n t  z e i t h e r  f rom t h e  ends  o f  t h e  c h a n n e l  o r  f rom 
i t s  l a t e r a l  s u r f a c e .  As a r e s u l t  o f  i n s e r t i o n  o f  Eqs. (2) and (3) i n t o  bounda ry  c o n d i t i o n  
(1) and a l l o w a n c e  f o r  t h e  r e c i p r o c i t y  r e l a t i o n  and the  n o r m a l i z a t i o n  c o n d i t i o n  f o r  the  s c a t -  
t e r i n g  core [5], we find an integral equation for the perturbation function in the case of a 
linear distribution of channel-wall temperature along the z axis: 

cn>O 
(4) 

h ~ ")O(--h-~-s - - c : )  @/0 ( h o c:)--z]l' 

where Wx(c' + e) = W(O, c' + c). 

3. It follows from integral Eq. (4), written with a mirror-diffusion model of the scat- 
tering core, that the sought function can be represented in the form 

h+ (z, c) = ~ (z) + F (z, c). 

In this case, the equation for h+(z, c) breaks down into a system of two integral equations 
for the functions F(z, c) and ~(z). The equation for F(z, c) is solved by the method of suc- 
cessive approximations with the assumption that the function ~ (x) is known. Insertion of the 
expression found for F(z, e) into the second equation of the system leads to a second-order 
Fredholm equation which is a generalization of the Clausing equation. I~ is solved by the 
Ritz variational method [6]. The convergence of this method was examined in [7], where it was 
shown that the solutions of the Clausing equation found in the first and second approximations 
differ by no more than 0.1%. It follows from analysis of the integral equation for ~(z) that 
it can be approximated by the function 

l z) 
~ ( z ) = A e ( v  . . . .  2 ) (  2 ' 

where A is the variational constant. Calculations lead to the following form of the perturba- 
tion function for mirror-diffuse boundary conditions: 

n=0 2 ,  2 

[ ( __ 5 )],~(z_nhocz)+(l_e)l]]O(z_nhocz)O(l+nhoez--z ) -  (5) § v §  ~ \ c  ~" 2 

- - [ v q -  x ( c  2 . . . .  ~-)](1--e)lO(z--nhocz)O(l.~-(n-{-1)hocz--Z)}--[v.q-'r(c~--5/2)]z, 

where 

(1 - -  ~) , , -1  2 �9 - -  

2 ,~=~ l 0~ n t 

A -  1 + 3 (l__e)._l 1+ - -  l---- U In 
n = l  

t~ 

(++('+v, ,, 
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Fig. i. Geometry of the problem. 

To obtain a sufficiently simple analytical solution of integral Eq. (4) with a Cercignani-- 
Lampis scattering core [4], the latter was subjected to certain simplifying transformations. 
In particular, the following conditions were imposed on the core parameters ~t and a n corres- 
ponding to the accommodation coefficients of the tangential component of momentum and that 
part of the kinetic energy corresponding to motion along a normal to the wall: ~n = i, (i -- 
a t) << i. Here, the complex integrand functions can be expanded into series in powers of 
(I -- at). The thus-simplified integral equation for h+(z, c) is solved with an accuracy to 
within the terms proportional to the first power of (i -- at). In this case, the unknown func- 
tion can be represented in the form of a sum 

h+(z, c) = ~(z) @ czg(z). (6) 

I n s e r t i o n  o f  (6) i n t o  t h e  i n t e g r a l  e q u a t i o n  f o r  h + ( z ,  e) makes  i t  p o s s i b l e  to  b r e a k  t h i s  e q u a -  
t i o n  down i n t o  a a y s t e m  o f  two i n t e g r a l  e q u a t i o n s  f o r  f u n c t i o n s  o f  a s i n g l e  v a r i a b l e  ~ ( z )  and 
g ( z ) .  A n a l y s i s  o f  t h e  s y s t e m  shows t h a t  ~ (z)  and g ( z )  s a t i s f y  t h e  symmet ry  c o n d i t i o n s  

~(z)-+-~(l--z)=O, g(z)--g( l - -z)=O. (7) 

I f  we i g n o r e  t h e  t e r m s  p r o p o r t i o n a l  to  t h e  powers  o f  (1 -- a t ) g r e a t e r  t h a n  the  f i r s t  power ,  
t h e n  t h i s  s y s t e m  can  b e  r e d u c e d  to  a s i n g l e  i n t e g r a l  e q u a t i o n  i n  ~ ( z ) .  At a t = 1,  t h i s  e q u a -  
t i o n  i n  t u r n  becomes  t h e  C l a u s i n g  e q u a t i o n .  I t  i s  s o l v e d  by  t h e  R i t z  v a r i a t i o n a l  method  [ 6 ] .  
P r o c e e d i n g  on t h e  b a s i s  o f  symmet ry  c o n d i t i o n s  (7) and t h e  fo rm o f  t h e  a b s o l u t e  t e r m  i n  t h e  
g i v e n  e q u a t i o n ,  ~ ( z )  can  be  a p p r o x i m a t e d  by  t h e  f u n c t i o n  

~(z)= B(  1 z) , 

where  B i s  t h e  v a r i a t i o n a l  c o n s t a n t .  I n  t h i s  c a s e ,  g ( z )  i s  d e t e r m i n e d  by s i m p l e  i n t e g r a t i o n  
o f  t h e  e x p r e s s i o n  f o r  ~ ( z ) .  

a s  a r e s u l t  o f  s o l u t i o n  o f  t h e  p r o b l e m  u s i n g  t h e  C e r c i g n a n i - - L a m p i s  c o r e  mode l  [ 4 ] ,  p e r t u r -  
b a t i o n  f u n c t i o n  h + ( z ,  e)  t a k e s  t h e  f o r m :  

l z) h+(z, c)=v{Bp( 2 1--at  c~(d[D(z) § D(I - - z ) I+  a/Z 

+ IQ(z) + Q(l-- z)l) }--  T -- / 1 - -  at cz d [D (z)+D (/--z)]} 
V Y 

(8) 

where 

Q (z) = z 3 (1 @ z~) -1/2 {(1 + z -z) E [(1 + zi) -1/2] _ K [(1 + z~) -l/2]}; 

{ ( ' )  ) H(z) =lzi(l.-k z~)-l/2 1 + - - ~  E[(l q-zi)-l/2]--K[(1-q- zi)-t/21 ; 

D (z) = / 7  (z) - -  Q (z); 

l 

BT = d {1 - -  4 (1 - -  st) ,f [D (z) + D (l - -  z)] 2 dz (aA)-l) ; 
0 
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Bp = Br - -  8 (1 - -  st) (~A) -x .[ Q (z) [D (z) q- D (l - -  z)l dz; 
0 

d = 1 @ 2l [(2 - -  I z) - -  (2 - -  l') (1 + l~')~/~1 (3A)-~; 

A = l(1 + i~)~/2-1n(/+ (1 -~ l~)~m); 

E(x) and K(x) are complete elliptic integrals of the first and second classes, respectively. 

4. The known distribution of the molecules reflected from the channel wall can be used 
to also calculate macroscopic characteristics of the flow, including heat and particle fluxes 
and the gas-temperature distribution near the wall. 

The particle flux JN and heat flux Jq through a cross section of the channel located a 
distance zo from the origin of the coordinates are determined from the expressions: 

4nR2 i 7 N =  ~-----7---. _ dz ~ c~f (z, c) dc, 

�9 5 ) f (z, c) dc, 
(9) 

where 

f (z, c) = o (c,,) {0 (c~+(z - -  Zo)/ho) [foo ( -  z) + f+ (z, c) 0(z) 0 (e0 - -  z)l - -  

- -  0 ( ( z o  - -  z ) / h o  - -  c~)  [/+ (z, c) 0 (z - -  zo) 0 (t - -  z) + [200 (z - - / )1 } .  

I f  we i n s e r t  i n t o  (9) t h e  f u n c t i o n  f + ( z ,  e) f o u n d  f o r  Maxwel l  m i r r o r - d i f f u s e  b o u n d a r y  c o n d i -  
t i o n s ,  we o b t a i n  t h e  f o l l o w i n g  f o r m u l a s :  

j~=__ 1 nlrtR.2vrl ~ (1 + M1--AM~), 
4 2 

(lO) 
Jg=---~nlr~R~ (1 + M,--AM2)----4-[9(I +MO--AM,I , 

where 

M~ e ~ (1--  ~)n-lN~ = - - ,  , i = 1 ,  2; 
n = l  n n ] 

N~ (x, y) 2 l~ [2 + y3 (l @ y2)3/2 + (x__ y)3 __ [l + (x__ y)213/2}; 
3 x- 

Nz(x,y) 23 x ~l { 2 - -  23 xY"+Y3--(I+Y2)I/2( 1 - '  32 xyq-y~)-- 

--3-~--x(x--Y)~q-(x--Y)a--[12 --~-(x--y)211/2[ I-  23X(X--Y)-[-(x--Y)2]} " 

The series M i converge poorly at e << 1 and diverge at e = 0. However, according to [i], they 
can be written in the form 

M~=N~(I, z~ 12 ' 2z~ z o ) ] q -  

+ ~ (l__e)n[ (n_~_l)Ni(~_~+ Zo )__2nNl( l z o) q_(n__l)N~(n___~ z o )J 
1 '  n q - 1  n ' n 1 '  n - - 1  " 

n~2  
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The dependence of (T(z) -- Tx)/AT on z/i at ~ = I: I) 1 = i; II) i0; IIl) i00. 

The dependence of (T(z) -- TI)/AT on z/1 at 1 = !0: I) g = 0.I; II) 0.5; III) 

The dependence of b v on z/l at a t = 0.8: I) l = i; II) 1 = I0. 

In this form, the series converge even at ~ = 0. It should be noted that the part of the ex- 
pression for particle flux JN M connected with the pressure gradient at zo = 0, 1 coincides to 
within the multiplier nxVT~R219/4 with the expression for the Clausing coefficient obtained 
by de Marcus [I]. 

Using the above-indicated simplifications, we can obtain the following for the Cercignani-- 
Lampis scattering core 

' ( -~ l~ /~ l  {v[1 N~(l, (l, Zo)~- 1 nxR2 + zo)--Bp N2 sg=-  V \ P /  

-}- Ix -6 lz] -- T [ 1 + Nx (l, zo) -- Br N~ (l, zo) -6 Ia]/2}, 

_ ! [9 -6 9N~ (l, Zo) -- Br N~ (l, zo)ll 
4 ! 

(ii) 

where 

4 (l-- l 

11 = at) d [ 17 (z - -  zo) [D (z) -k D (t -- z)] dz; 
z~l 2 3 

0 

Io = 4(I =~t)  i fl(z--zo)[Q(z) + Qq--z)Idz .  
o 

Since the channel walls are impermeable, chemical reactions are absent, and we are dealing 
with a steady regime of gas motion, the dependence of the particle flux on the longitudinal 
coordinate z is a consequence of the approximate nature of the solution of the integral equa- 
tions for the perturbation function- in particular, the approximation of the solutions by 
linear functions of z. It was rigorously proven in [8] that for a free-molecular gas flow in 
a long channel, such an approximation makes it possible to calculate the flows in the middle 
of the channel to within terms on the order of o(/-11n/). 

The asymptotic expressions for JN M and jqM in the approximation 1-Xlnl << c and for 
JN C and jqC in the approximation l-~in/ << i, found from general formulas, will be as follows 
at zo = 0, I 

I nlv~R2 4 2 - - ~  ( "~) 
J~ 4 3 ~ 2 
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jq = --4 PlvraR ~ --  8 "~ , e 2 4 

1--0- i 32oo 
- - ( t - - , z t ) ] } .  

(12) 

At zo = s the particle fluxes remain the same as at zo = O, 7., while the heat fluxes take 
the form 

M 1 4 2 - - e ( v  9 )  
Jq = -u  PlvTuR'2 3 e 2 T "r , 

JC=@pavTZtR2 4 ( v ~  2 4 9 "c)', 
(13) 

There is no longer any physical validity to the dependence on the longitudinal coordinate z 
in the asymptotic expressions for J~ and JN C, while at the same time the heat flows remain 
functions of z. In the flow jqM along the channel, only that part due to the temperature grad- 
ient changes. In jqC, the parts which change are connected with the temperature gradient and 
the pressure gradient. This difference in the heat fluxes in the middle and at the ends of 
the channel can only be attributed to the presence of heat flows through the lateral surfaces 
of both halves of the channel which are equal in absolute value but opposite in sign. 

The expressions for the heat flux through the lateral surface of the left half have the 
form �9 

,~ 1 4 2 - -  
Jq -- PlvraR"- - -  "r, 

T 4 3 e 

5-_1 JCu- 4 PlVraR2~o v--128 5 -  10 (1--at) + "c 1@ 1280-----~ 

However, the heat flux through the entire lateral surface is equal to zero, since the density 
of the flux is antisymmetrical relative to the middle of the channel. In connection with the 
presence of heat fluxes normal to the channel wall, it is interesting to calculate the gas- 
temperature distribution near the surface of the solid T(z). It is found in a linear approxima- 
tion on the basis of a kinetic determination of temperature [9]: 

- -  e (1 -- ((n 2 + z ~) In (n 2 + z~)-l/2l 

where 

- - ( n 2 - +  - (l--z)"-)l/2E[n(n~@ (l--z)") -~/2 1 ) ] } ,  

TC(z) = T1 {1 -- vlb,~ + ribs}, 

(15) 

b~(z)= l--=t  l 6~l .I sign (z -- y) [ I @(z--y)21-3/~{Q(y) + Q ( l - - y ) + d [ D ( y ) + D ( l - - y ) ] } d y ,  
0 

1 { 2 z.,.)l (1 (l z)'-')l/2f z)~)-r/21l+ b.~(z)=-ff 1 + - - ~ - [ ( 1 +  /2E[(I +z'~)-~/21 ~ + -- [ ( l + ( l - -  

l 

+ --~/(1--o~t) ! sign(z--y)[1 @ (z--y)Z]-3/2[D(y)q - D( l - -y ) ]dy ' } .  

The distributions of gas temperature near the wall obtained here (15) differ from the . 

linear temperature distribution for the channel surface. This difference is also connected 
with the existence of heat flows directed along normals to the side of the channel. Figures 
2 and 3 show the temperature distribution TM(z) in the case of mirror-diffuse boundary condi- 
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tions. It is evident from the data that the difference between the kinetic temperature of 
the gas and the temperature of the channel surface is greatest at the ends of the channel. 
This difference increases both with a reduction in channel length and with a reduction in the 
fraction of diffuse reflection, i.e., l and ~ have a similar effect on the distribution of 
the kinetic temperature of the gas in the channel. 

In contrast to the solution obtained with mirror-diffuse boundary conditions, the solu- 
tion obtained on the basis of the Cercignani--Lampis scattering core model makes it possible 
to conclude that the heat flux density normal to the wall may be nontrivial even in the ab- 
sence of a temperature difference at the ends of the channel. Figure 4 shows the dependence 
of the function b~ on the ratio z/l, characterizing the temperature distribution near the 
channel wall with the motion of the gas under the influence of a pressure gradient. The con- 
tribution to b~ connected with the deviation of ~t from 1 is small (about 0.2%) in the given 
solution, so the graph of this function in relation to the ratio z/l nearly coincides with the 
curve III in Fig. 3. It follows from Figs. 2-4 that the transverse heat flows are localized 
at the ends of the channel. 

NOTATION 

c = (Cn, c~, Cz) , dimensionless velocity of the gas molecules~ f o, f2o, Maxwell distri- 
butions of the gas molecules in the volumes; f-, f+, distributions of the gas molecules inci- 
dent on the channel wall and reflected from the wall; h +, perturbation function; JN, Jq~ mass 
and heat fluxes through the cross section of the channel; i/2Jq, heat flux through half of the 
lateral surface of the channel; k, Boltzmann constant; L, channel length; l, dimensionless 
channel length; m, mass of a gas molecule; n, numerical density; P, pressure; R, channel rad- 
ius; T, temperature; e(x), Heaviside function; v', v, absolute velocities of the gas molecules 
incident upon and reflected from the channel wall; VT, mean thermal velocity of the gas mole- 
cules; W(z, c' § c), scattering core; z, longitudinal coordinate; e, fraction of gas molecules 
diffusively reflected by the wall. 
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